ท่านสามารถดูบทความที่มีประโยชน์อื่นๆได้ที่ www.krujinkrub.com บทความ

ในสัตว์เลี้ยงลูกด้วยนมโดยมาก ระบบการทรงตัว เป็นระบบรับความรู้สึกที่ให้ข้อมูลสำคัญที่สุดเกี่ยวกับการกำหนดรู้การทรงตัว (equilibrioception หรือ sense of balance) และการรู้ทิศทางของร่างกายภายในปริภูมิ (spatial orientation) ในสัตว์เลี้ยงลูกด้วยนมโดยมาก ระบบการทรงตัวพร้อมกับคอเคลียซึ่งเป็นส่วนของระบบการได้ยิน เป็นส่วนประกอบของห้องหูชั้นใน (labyrinth of the inner ear) เพราะการเคลื่อนไหวร่างกายมีทั้งแบบหมุนและแบบเลื่อน ระบบการทรงตัวจึงมีส่วนประกอบสองอย่างเหมือนกัน เป็นระบบรับความรู้สึกที่ให้ข้อมูลสำคัญที่สุดเกี่ยวกับการกำหนดรู้การทรงตัว (equilibrioception หรือ sense of balance) และการรู้ทิศทางของร่างกายภายในปริภูมิ (spatial orientation) ในสัตว์เลี้ยงลูกด้วยนมโดยมาก ระบบการทรงตัวพร้อมกับคอเคลียซึ่งเป็นส่วนของระบบการได้ยิน เป็นส่วนประกอบของห้องหูชั้นใน (labyrinth of the inner ear) เพราะการเคลื่อนไหวร่างกายมีทั้งแบบหมุนและแบบเลื่อน ระบบการทรงตัวจึงมีส่วนประกอบสองอย่างเหมือนกัน

เช่นการเคลื่อนไหวแบบ vestibulo-ocular reflex ซึ่งจำเป็นในการเห็นที่ชัดเจน และไปยังกล้ามเนื้อที่ทำให้สามารถทรงตัวไว้ได้ ระบบการทรงตัวมีบทบาท
  • รับรู้การเคลื่อนไหวของตนเทียบกับแรงโน้มถ่วง
  • รับรู้ตำแหน่งศีรษะเทียบกับแรงโน้มถ่วง
  • รับรู้ทิศทางและปริภูมิรอบ ๆ ตนเทียบกับแรงโน้มถ่ว
  • ควบคุมระบบสั่งการและรีเฟล็กซ์เพื่อสร้างเสถียรภาพต่อการเห็น ตำแหน่งศีรษะ และการทรงตัว

ข้อมูลจากระบบการทรงตัว ระบบการเห็น และระบบรับความรู้สึกทางกาย ทำให้สามารถรู้ตำแหน่งและทิศทางของร่างกายภายในปริภูมิรอบ ๆ ตัว ระบบประสาทส่วนนอกของระบบการทรงตัว อยู่ในโครงสร้างที่เรียกว่า vestibular labyrinth ที่เป็นส่วนของห้องหูชั้นใน โดยโครงสร้างประสาทจะทำหน้าที่เป็นตัววัดความเร่งและอุปกรณ์นำวิถีอาศัยความเฉื่อย ที่ส่งข้อมูลไปยังเขตสมองต่าง ๆ อย่างต่อเนื่องเกี่ยวกับการเคลื่อนไหวและตำแหน่งของศีรษะ เขตสมองรวมทั้งก้านสมอง สมองน้อย และเปลือกสมองรับความรู้สึกทางกาย

ระบบการทรงตัวของมนุษย์
ระบบการทรงตัวของมนุษย์ 10

ห้องหูชั้นใน (labyrinth of the inner ear) ของหูด้านขวา ประกอบด้วย คอเคลีย (cochlea) เป็นอวัยวะปลายประสาทของระบบการได้ยิน ส่วนอวัยวะรับความรู้สึกของระบบการทรงตัวรวมทั้ง หลอดกึ่งวงกลม (semicircular ducts) ซึ่งทำหน้าที่รับรู้การเคลื่อนไหวแบบหมุน (คือความเร่งเชิงมุม) saccule และ utricle ทำหน้าที่รับรู้ความเร่งเชิงเส้น

โครงสร้างส่วนนอก vestibular labyrinth

ครงสร้างในระบบประสาทส่วนนอกหลักของระบบการทรงตัวก็คือ vestibular labyrinth ที่เป็นส่วนของห้องหูชั้นใน (labyrinth) เป็นส่วนที่มีอะไรหลาย ๆ อย่างคล้ายกับคอเคลียของระบบการได้ยิน และจริง ๆ เป็นส่วนที่เชื่อมต่อติดกับคอเคลีย (ผ่านท่อคอเคลียและ ductus reuniens[5]) เหมือนกับคอเคลีย โครงสร้างนี้เกิดมาจาก otic placode ในช่วงยังเป็นตัวอ่อน และใช้เซลล์รับความรู้สึกประเภทเดียวกันคือ เซลล์ขน ในการแปรสิ่งเร้าทางกายภาพต่าง ๆ รวมทั้งการเคลื่อนไหวของศีรษะ ผลต่าง ๆ ของความเฉื่อยเนื่องจากแรงโน้มถ่วง และแรงสั่นจากพื้นเป็นต้น ให้เป็นกระแสประสาทเพื่อส่งไปยังสมอง

โครงสร้างนี้ฝังอยู่ในกระดูกขมับและประกอบด้วยระบบหลอดกึ่งวงกลมและอวัยวะคือ otolith organs (คือ utricle และ saccule) โดยระบบหลอดกึ่งวงกลมเป็นตัวตรวจจับความเร่งในเชิงมุม/แบบหมุนของศีรษะ และ otolith organs เป็นตัวตรวจจับทั้งความเร่งในเชิงเส้นของศีรษะ และตำแหน่งศีรษะในเชิงสถิตเทียบกับแกนของแรงโน้มถ่วง[7]

Vestibular labyrinth มีส่วนประกอบที่ให้สิ่งแวดล้อมทางไอออนที่จำเป็นในการทำงานของเซลล์ขน เยื่อที่มีลักษณะเป็นถุงของโครงสร้างและเป็นที่ฝังตัวของขนจากเซลล์ขน จะเต็มไปด้วยน้ำที่เรียกว่า endolypmph ซึ่งคล้ายกับน้ำภายในเซลล์เพราะมากไปด้วยไอออน K+ และมี Na+ น้อย เยื่อเช่นนี้เมื่อรวมกับเยื่อที่คล้าย ๆ กันในคอเคลียก็จะเรียกว่า เยื่อห้องหูชั้นใน (membranous labyrinth) ในระหว่างเยื่อนี้กับกระดูกห้องหูชั้นใน (osseous labyrinth) เป็นน้ำอีกอย่างหนึ่งที่เรียกว่า perilypmph ซึ่งคล้ายกับน้ำสมองร่วมไขสันหลัง เพราะมากไปด้วยไอออน Na+ และมี K+ น้อย

เซลล์ขนมีขนที่ยื่นออกไปในเยื่อที่ว่านี้และอาบด้วยน้ำ endolypmph และมีส่วนฐานของเซลล์ที่อาบด้วยน้ำ perilypmph โดยมี tight junction ซึ่งผนึกส่วนผิวยอดเซลล์ และแยกน้ำสองอย่างนี้จากกัน

เซลล์ขนเป็นโครงสร้างพื้นฐานของการรับรู้ในระบบการทรงตัว โดยมีลักษณะและการทำงานคล้ายกับของเซลล์ขนในระบบการได้ยิน การเบนขนของเซลล์ (เช่นที่เกิดจากการเคลื่อนไหวหรือแรงโน้มถ่วง) แบบ stereocilia ไปทางคิโนซิเลียม จะเปิดช่องถ่ายโอนสัญญาณที่เปิดปิดโดยแรงกล/โดยสปริงที่ปลายขน ซึ่งทำให้เซลล์ลดขั้วและหลั่งสารสื่อประสาท และเพิ่มอัตราการส่งสัญญาณ/การยิงศักยะงานในเส้นประสาท ส่วนการเบนตรงกันข้ามจะปิดช่องถ่ายโอนสัญญาณ เพิ่มขั้วของเซลล์ และลดการส่งสัญญาณในเส้นประสาท การทำงานแบบเป็นสองเฟสของเซลล์หมายความว่า จะมีช่องขนซึ่งเปิดอยู่ตลอดเวลา และเซลล์ก็จะส่งสัญญาณไปยังสมองเรื่อย ๆ แม้เมื่อสิ่งเร้าไม่ได้เปลี่ยนไป

การเรียงขนจากคิโนซิเลียมซึ่งเป็นขนยาวสุด ไปเป็น stereocilia ของเซลล์ขนโดยยาวลดลงตามลำดับ จะมีทิศทางต่างกันโดยเฉพาะ ๆ ในระบบ โดยในระบบหลอดกึ่งวงกลม เซลล์ทั้งหมดในกระเปาะอันเดียวกัน จะเรียงขนไปทางเดียวกัน ส่วนใน saccule และ utricle ของ otolithic organs เซลล์ขนสองกลุ่มที่แบ่งออกโดยร่องโค้ง striola จะมีขนเรียงทิศทางในตรงกันข้ามกัน ดังนั้น ระบบการทรงตัวรวม ๆ กัน จึงตอบสนองต่อการเคลื่อนที่ได้ในทุกทิศทาง

ระบบหลอดกึ่งวงกลม

ระบบการทรงตัวของมนุษย์
ระบบการทรงตัวของมนุษย์ 11

เนื่องจากโลกมี 3 มิติ ดังนั้น ระบบการทรงตัวจึงมีหลอดกึ่งวงกลม 3 หลอดในห้องหูชั้นในแต่ละข้างเพื่อตรวจจับการเคลื่อนไหวแบบหมุน โดยแยกเรียกว่า

1.หลอดกึ่งวงกลมแนวนอน (horizontal) หรือ หลอดกึ่งวงกลมด้านข้าง (lateral),

2.หลอดกึ่งวงกลมด้านหน้า (anterior) หรือ หลอดกึ่งวงกลมด้านบน (superior)

3.หลอดกึ่งวงกลมด้านหลัง (posterior) หรือ หลอดกึ่งวงกลมด้านล่าง (inferior)

ส่วนหลอดกึ่งวงกลมด้านหน้าและด้านหลังรวมกันอาจจะเรียกว่า หลอดกึ่งวงกลมแนวตั้ง (vertical)

โครงสร้างของระบบการทรงตัวในหูชั้นใน แสดงหลอดกึ่งวงกลม, เซลล์ขน, กระเปาะ (ampulla หรือ osseous ampulla), cupula (หรือ ampullary cupula), เส้นประสาท vestibular, และน้ำ endolymph

หลอดกึ่งวงกลมด้านหน้าและด้านหลังมีวงโค้งขึ้นไปในแนวตั้งและวางตั้งฉากกับกันและกัน ทั้งหลอดกึ่งวงกลมด้านหน้าและด้านหลังตั้งเป็นมุม 45 องศา กับระนาบแบ่งหน้าหลัง (frontal) และระนาบแบ่งซ้ายขวา (sagittal) หลอดกึ่งวงกลมด้านข้างมีวงโค้งไปทางข้าง ๆ โดยทำมุม 30 องศากับระนาบแนวนอน (horizontal) ทิศทางที่ต่าง ๆ กันเช่นนี้ทำให้สามารถตรวจจับการหมุนศีรษะในระนาบต่าง ๆ กัน โดยหลอดแต่ละอันจะไวต่อการหมุนสูงสุดในระนาบของตน 

  • การเคลื่อนไหวของของเหลวภายในหลอดกึ่งวงกลมแนวนอน ทำให้สามารถตรวจจับการหมุนหัวรอบแกนแนวตั้ง เช่นในการหมุนตัว
  • หลอดกึ่งวงกลมด้านหน้าและด้านหลังตรวจจับการหมุนหัวในระนาบแบ่งซ้ายขวา (sagittal) เช่นในการผงกหัว และในระนาบแบ่งหน้าหลัง (coronal) เช่นในการตีลังกาแบบล้อเกวียน

หลอดทั้งหมดเต็มไปด้วยน้ำ Endolymph แต่ละข้างของหลอดจะเปิดเชื่อมกับ Utricle โดยข้างหนึ่งจะมีป่องพองที่เรียกว่า กระเปาะ (ampulla) ซึ่งมีเซลล์ขนและเซลล์ค้ำจุนอยู่ที่เนินซึ่งเรียกว่า สันกระเปาะ (crista ampullaris) เซลล์ขนจะมีขนแบบ stereocilia และคิโนซิเลียมที่ยอดของเซลล์ โดยขนจะฝังอยู่ในโครงสร้างยืดหยุ่นได้คล้ายวุ้นที่เรียกว่า ampullary cupula ซึ่งยื่นออกจากสันกระเปาะขึ้นปิดกระเปาะไม่ให้น้ำไหลวนได้ เมื่อศีรษะหมุนในระนาบเดียวกับหลอด น้ำ endolymph จะล้าหลังหลอดที่เป็นกระดูกเพราะแรงเฉื่อย แล้วดัน cupula ซึ่งเบนขนที่ฝังอยู่ภายในโดยเบนไปทางทิศตรงกันข้ามการหมุนศีรษะ และทำให้เซลล์ขนเปลี่ยนการส่งกระแสประสาทไปยังสมอง แต่หลังจากหมุนอย่างต่อเนื่องโดยไม่เปลี่ยนความถี่ภายใน 25-30 วินาที น้ำก็จะตามหลอดทันเป็นการยุติการเบนขนใน cupula เทียบกับความเร่งในเชิงเส้นซึ่งสร้างแรงดันที่ด้านทั้งสองของ cupula เท่า ๆ กัน จึงไม่การขยับเบนขน

ระบบการทรงตัวของมนุษย์
ระบบการทรงตัวของมนุษย์ 12

ในขณะที่หลอดกึ่งวงกลมตอบสนองต่อการหมุน อวัยวะที่เรียกว่า Otolithic organs[A] จะรับรู้ความเร่งเชิงเส้น เช่น ที่เกิดจากการเอียงหัวหรือการเคลื่อนที่ ในแต่ละซีกร่างกาย มนุษย์มีอวัยวะ Otolithic organs 2 ส่วนที่เรียกว่า utricle[A] และ saccule โดยทั้งสองจะมีหย่อมเซลล์ขนและเซลล์ค้ำจุนในรูปวงรีที่เรียกว่า macula ซึ่งยาวประมาณ 2-3 มม. และเรียงอยู่เป็นแนวนอนและแนวตั้งตามลำดับ ในมนุษย์ utricle จะมีเซลล์ขนประมาณ 30,000 ตัว และ saccule 16,000 ตัว เซลล์ขนแต่ละตัวจะมีขนแบบ stereocilia 40-70 เส้น และขนแบบคิโนซิเลียมที่ยาวสุดอีก 1 เส้น ปลายของขนเหล่านี้จะฝังอยู่ในเยื่อ Otolithic Membrane

เหนือเซลล์ขนและมัดขนจะเป็นชั้นคล้ายวุ้น และเหนือชั้นนี้จะมีเยื่อเส้นใยที่เรียกว่า Otolithic membrane ซึ่งมีผลึกแคลเซียมคาร์บอเนตฝังอยู่ที่เรียกว่า otoconia (แปลว่า ผงหู) ผลึกยาวประมาณ 0.5-10 ไมโครเมตรและมีเป็นล้าน ๆ นี้ เป็นตัวให้ชื่อกับอวัยวะโดยคำว่า otolith มาจากภาษากรีกซึ่งแปลว่า หินหู ทำให้เยื่อหนักกว่าและเฉื่อยกว่าโครงสร้างและน้ำรอบ ๆ เป็นการเพิ่มความรู้สึกเกี่ยวกับแรงโน้มถ่วงและการเคลื่อนที่ ดังนั้น เมื่อศีรษะเอียง แรงโน้มถ่วงก็จะขยับเยื่อซึ่งเบนขนที่ฝังอยู่ในเยื่อ และเมื่อเกิดการเร่งในเชิงเส้นเช่นการเคลื่อนที่ มวลของเยื่อจะทำให้มันล้าหลังแล้วเบนขนที่ฝังอยู่เช่นกัน

Saccule วางอยู่ในแนวตั้ง และ Utricle วางอยู่ในแนวนอน ทิศทางการเบนขนที่เร้าเซลล์จะเป็นไปตามร่อง striola บน macula ของอวัยวะทั้งสอง ซึ่งแสดงว่า utricle ตอบสนองต่อความเร่งในระนาบนอน เช่น การเอียงหัวและเคลื่อนที่ไปตามแนวราบ และ saccule ต่อความเร่งในระนาบตั้งถึงแม้ก็ตอบสนองต่อการเคลื่อนที่ไปทางหน้าหลังในระนาบแบ่งซ้ายขวาด้วย เมื่อศีรษะตั้งตรง เยื่อ otolithic membrane จะกดลงตรง ๆ ที่เซลล์ขนและกระตุ้นเซลล์ขนเพียงเล็กน้อย แต่เมื่อศีรษะเอียง Otolithic membrane จะห้อยแล้วเบนขน Stereocilia และกระตุ้นเซลล์ขน การเปลี่ยนทิศทางของศีรษะจะกระตุ้นทั้ง utricle และ saccule ในหูทั้งสองทำให้ส่งกระแสประสาทในรูปแบบต่าง ๆ กัน สมองจะแปลทิศทางของศีรษะโดยเปรียบเทียบการส่งสัญญาณรวม ๆ กันจาก utricle บวก saccule, ข้อมูลจากตา, และข้อมูลจากหน่วยรับแรงยืดที่คอ แล้วจึงสามารถบอกได้ว่าเป็นเพียงแค่ศีรษะหรือเป็นทั้งร่างกายที่เอียง

สั้น ๆ ก็คือ Otolithic Organ ทำให้สามารถรู้สึกได้ว่า กำลังเร่งไปข้างหน้า ข้างหลัง ข้างซ้าย ข้างขวา บน หรือล่าง เร็วแค่ไหน หรือสามารถรู้ความเร่งในเชิงเส้น และตำแหน่งสถิตของศีรษะเทียบกับแกนของแรงโน้มถ่วง

ผลที่ได้เช่นกันต่อเซลล์ขนจากการเอนศีรษะและการเร่งเชิงเส้น อาจจะทำให้คิดได้ว่า สิ่งเร้าต่าง ๆ บางอย่างอาจทำให้รู้สึกเช่นเดียวกันเมื่อปิดตาหรือเมื่ออยู่ในที่มืด แต่ก็ปรากฏว่ามนุษย์สามารถแยกแยะสิ่งเร้าต่าง ๆ เหล่านั้นได้ โดยอาจเป็นเพราะได้ข้อมูลรวม ๆ จากอวัยวะระบบนี้บวกกับระบบหลอดกึ่งวงกลม ระบบการเห็น และระบบรับความรู้สึกทางกาย เทียบกับการแปลผลสัญญาณการหมุนตัวจากหลอดกึ่งวงกลมซึ่งตรงไปตรงมา การแปลผลจาก Otolithic organs นั้นจะยากกว่า เนื่องจากว่า แรงโน้มถ่วงของโลกก็เป็นความเร่งเชิงเส้นอีกประเภทหนึ่ง ดังนั้น สมองจึงต้องแยกแยะสัญญาณที่มาจากอวัยวะว่า เกิดขึ้นจากการเคลื่อนไหวเชิงเส้น หรือเกิดจากแรงโน้มถ่วง ซึ่งมนุษย์ก็สามารถทำการนี้ได้ดี แต่กลไกทางประสาทที่แยกแยะความเร่งสองอย่างนี้ ก็ยังไม่เป็นที่เข้าใจกันดี[ต้องการอ้างอิง]

มนุษย์สามารถรู้สึกถึงหัวที่เอียงและความเร่งเชิงเส้นทั่วทุกทิศแม้ในที่มืด เพราะทั้งทิศทางการวางตัวต่าง ๆ ของ Otolithic Organs และทิศทางที่ต่างกันอย่างต่อเนื่องของกลุ่มเซลล์ขนสองกลุ่มที่ข้างทั้งสองของร่องโค้ง Striola ซึ่งวิ่งผ่ากลาง macula คือ เซลล์ขนที่อยู่ในข้างตรงข้ามกันจะเบนเลียนกันเหมือนเงาสะท้อนในกระจก ดังนั้น เมื่อข้างหนึ่งได้การกระตุ้น อีกข้างหนึ่งก็จะได้การยับยั้ง ผลการเร้าการยับยั้งตรงข้ามกันที่ได้จากการเอียงศีรษะไปทางหนึ่งหรือได้จากแรงเร่ง ก็จะทำให้เกิดสัญญาณความรู้สึกที่ต่าง ๆ กันจากเซลล์ขนของหูทั้งสอง ทำให้สามารถบอกได้ว่า ศีรษะเอียงหรือมีแรงเร่งไปทางไหน  หลังจากนั้น ก็จะมีการส่งข้อมูลความรู้สึกนั้นไปยังสมอง ซึ่งอาจจะตอบสนองด้วยการส่งสัญญาณการแก้ไขไปยังระบบประสาทหรือระบบกล้ามเนื้อ เพื่อให้ทั้งการทรงตัว และการรับรู้ดำเนินต่อไปได้

ระบบการทรงตัวของมนุษย์
ระบบการทรงตัวของมนุษย์ 13